Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IET Syst Biol ; 17(6): 352-365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907428

RESUMO

With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including POSTN, MMP1, COL3A1, COL1A2, CXCL12, TIMP3, VCAM1, and COL1A1 were selected from the PPI network by Cytoscape software. Then, five hub genes (MMP1, POSTN, COL3A1, COL1A2, and COL1A1) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.


Assuntos
Refluxo Gastroesofágico , Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Perfilação da Expressão Gênica/métodos , Metaloproteinase 1 da Matriz/genética , Biomarcadores Tumorais/genética , MicroRNAs/genética , Fibrose Pulmonar Idiopática/genética , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/genética , Biologia Computacional/métodos
2.
Front Mol Biosci ; 9: 888194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693550

RESUMO

Background: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrinopathies disorder in women of reproductive age and non-alcoholic fatty liver (NAFLD) is one of the most common liver diseases worldwide. Previous research has indicated potential associations between PCOS and NAFLD, but the underlying pathophysiology is still not clear. The present study aims to identify the differentially expressed genes (DEGs) between PCOS and NAFLD through the bioinformatics method, and explore the associated molecular mechanisms. Methods: The microarray datasets GSE34526 and GSE63067 were downloaded from Gene Expression Omnibus (GEO) database and analyzed to obtain the DEGs between PCOS and NAFLD with the GEO2R online tool. Next, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the DEGs were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, NetworkAnalyst was used to construct the network between the targeted microRNAs (miRNAs) and the hub genes. Results: A total of 52 genes were identified as DEGs in the above two datasets. GO and KEGG enrichment analysis indicated that DEGs are mostly enriched in immunity and inflammation related pathways. In addition, nine hub genes, including TREM1, S100A9, FPR1, NCF2, FCER1G, CCR1, S100A12, MMP9, and IL1RN were selected from the PPI network by using the cytoHubba and MCODE plug-in. Then, four miRNAs, including miR-20a-5p, miR-129-2-3p, miR-124-3p, and miR-101-3p, were predicted as possibly the key miRNAs through the miRNA-gene network construction. Conclusion: In summary, we firstly constructed a miRNA-gene regulatory network depicting interactions between the predicted miRNA and the hub genes in NAFLD and PCOS, which provides novel insights into the identification of potential biomarkers and valuable therapeutic leads for PCOS and NAFLD.

3.
Environ Pollut ; 265(Pt A): 114842, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32497820

RESUMO

Testicular dysgenesis syndrome might be due to the fetal testis defects caused by endocrine disruptors. Here, we report the combined effects of in utero exposure to cadmium (CdCl2, Cd) and di-n-butyl phthalate (DBP) on fetal testis development in rats. Pregnant Sprague-Dawley rats were randomly divided into four groups: control, Cd, DBP (250 mg/kg/day), and Cd + DBP. Cd (0.25 mg/kg/once) was intraperitoneally injected to the dam on gestational day 12 and DBP (250 mg/kg) was daily gavaged to the dam on gestational day 12 for 10 days. Cd, DBP, and Cd + DBP lowered serum testosterone levels in male fetuses. Cd and DBP did not alter fetal Leydig cell (FLC) number, but the combined exposure led to decreased FLC number. Cd did not affect FLC aggregation while DBP caused FLC aggregation and the combined exposure worsened FLC aggregation. Cd lowered FLC mRNA (Lhcgr, Star, Cyp11a1, and Insl3) levels and DBP lowered Lhcgr, Star, Insl3, and Nr5a1 levels. DBP up-regulated Scarb1 expression without affecting Cyp11a1 while the combined exposure antagonized DBP. These two chemicals and its combination did not affect Sertoli cell number and gene (Amh, Fshr, and Sox9) expression at current doses. In conclusion, the combined exposure of Cd and DBP exerts synergically antiandrogenic effects via targeting FLC development.


Assuntos
Dibutilftalato , Testículo , Animais , Cádmio , Feminino , Feto , Células Intersticiais do Testículo , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Testosterona
4.
Artigo em Inglês | MEDLINE | ID: mdl-30906280

RESUMO

Fibroblast growth factor 1 (FGF1) is reported to be expressed in the testis. How FGF1 affects stem Leydig cell development remains unclear. Here, we report the effects of FGF1 on rat stem Leydig cell development in an ethane dimethane sulfonate (EDS)-treated model. FGF1 (100 ng/testis) significantly increased serum testosterone level, increased PCNA-positive Leydig cell percentage and Leydig cell number, but down-regulated the expression of Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd11b1 in Leydig cells per se, after its daily intratesticular injection from post-EDS day 14 for 14 days. Primary culture of the seminiferous tubules showed that FGF1 stimulated EdU incorporation to stem Leydig cells but blocked the differentiation into the Leydig cell lineage, possibly via FGFR1-mediated mechanism. In conclusion, FGF1 promotes stem Leydig cell proliferation but blocks its differentiation.

5.
J Cell Mol Med ; 23(1): 426-438, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30320465

RESUMO

Oncostatin M (OSM) is a pleiotropic cytokine within the interleukin six family of cytokines, which regulate cell growth and differentiation in a wide variety of biological systems. However, its action and underlying mechanisms on stem Leydig cell development are unclear. The objective of the present study was to investigate whether OSM affects the proliferation and differentiation of rat stem Leydig cells. We used a Leydig cell regeneration model in rat testis and a unique seminiferous tubule culture system after ethane dimethane sulfonate (EDS) treatment to assess the ability of OSM in the regulation of proliferation and differentiation of rat stem Leydig cells. Intratesticular injection of OSM (10 and 100 ng/testis) from post-EDS day 14 to 28 blocked the regeneration of Leydig cells by reducing serum testosterone levels without affecting serum luteinizing hormone and follicle-stimulating hormone levels. It also decreased the levels of Leydig cell-specific mRNAs (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins by the RNA-Seq and Western blotting analysis. OSM had no effect on the proliferative capacity of Leydig cells in vivo. In the seminiferous tubule culture system, OSM (0.1, 1, 10 and 100 ng/mL) inhibited the differentiation of stem Leydig cells by reducing medium testosterone levels and downregulating the expression of Leydig cell-specific genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins. OSM-mediated action was reversed by S3I-201 (a STAT3 antagonist) or filgotinib (a JAK1 inhibitor). These data suggest that OSM is an inhibitory factor of rat stem Leydig cell development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Oncostatina M/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Hormônio Foliculoestimulante/metabolismo , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo
6.
Toxicology ; 411: 60-70, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391266

RESUMO

Dicyclohexyl phthalate (DCHP) is a phthalate plasticizer with a ring structure in the alcohol moiety. The objective to the current study was to determine the effects of DCHP on Leydig cell regeneration in the adult rat-testis. Adult male Sprague Dawley rats received intraperitoneally an injection of ethane dimethane sulfone (EDS) to eliminate all Leydig cells in the testis and then were divided into 4 groups of 0 (control), 10, 100, and 1000 mg/kg/day DCHP. Rats were gavaged either vehicle (corn oil, control) or DCHP from post-EDS day 7 to day 21 and 28. On post-EDS day 21 and day 28, rats were euthanized and serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) levels were measured, and Leydig cell number, cell size, gene, and protein expression were evaluated. During the course of exposure, DCHP did not cause the general toxicity to rats. On post-EDS day 21, DCHP significantly increased serum testosterone level at 10 and 100 mg/kg and increased Leydig cell number at 10 mg/kg via stimulating their mitosis. On post-EDS day 28, DCHP lowered serum testosterone levels and Leydig cell number at 1000 mg/kg. DCHP dose-dependently down-regulated the expression of many Leydig cell genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, and Insl3) and their proteins, especially at 1000 mg/kg. DCHP also lowered the pAKT1/AKT1 and pERK1/2/ERK1/2 ratios. In conclusion, DCHP at low doses (10 and 100 mg/kg) increased Leydig cell number during the initial regeneration and inhibited Leydig cell regeneration during the course of its exposure.


Assuntos
Células Intersticiais do Testículo/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Testículo/citologia , Androgênios/análise , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/sangue
7.
Chem Res Toxicol ; 31(12): 1315-1322, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30422632

RESUMO

Ziram is a dimethyldithiocarbamate fungicide, which may influence the male reproductive system as a potential endocrine disruptor. We interrogated the disruption of ziram on rat progenitor Leydig cell development. Prepubertal male Sprague-Dawley rats were orally treated with 0, 2, 4, or 8 mg/kg ziram for 2 weeks. We investigated the effects of ziram on serum testosterone levels, Leydig cell number, and Leydig and Sertoli cell gene and protein expression, SIRT1/PGC-1α levels, and phosphorylation of AKT1, ERK1/2, and AMPK in vivo. We also interrogated the effects of ziram on reactive oxidative species (ROS) level, apoptosis rate, and mitochondrial membrane potential of progenitor Leydig cells in vitro. Ziram decreased serum testosterone and follicle-stimulating hormone levels, the down-regulated Leydig cell-specific gene ( Lhcgr, Scarb1, Star, Cyp17a1, and Hsd17b3), and their protein expression. However, ziram stimulated anti-Müllerian hormone production. Ziram lowered SIRT1/PGC-1α and phosphorylated protein levels of AKT1. Ziram induced ROS and apoptosis and lowered the mitochondrial membrane potential of progenitor Leydig cells in vitro. In conclusion, ziram disrupts Leydig cell development during the prepubertal period potentially through the SIRT1/PGC-1α and phosphorylated AKT1 signaling.


Assuntos
Fungicidas Industriais/toxicidade , Puberdade Tardia/etiologia , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Ziram/toxicidade , Animais , Apoptose/efeitos dos fármacos , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fungicidas Industriais/química , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Puberdade Tardia/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Testículo/metabolismo , Testosterona/sangue , Ziram/química
8.
Front Pharmacol ; 9: 833, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147652

RESUMO

Triphenyltin chloride (TPT) is present in a wide range of human foods. TPT could disrupt testis function as a potential endocrine disruptor of Leydig cells. However, the effect of TPT on pubertal Leydig cell development is still unclear. The objective of the current study was to explore whether exposure to TPT affected Leydig cell developmental process and to clarify the underlying mechanisms. Male Sprague-Dawley rats at 35 days of age were randomly divided into four groups and received normal corn oil (control), 0.5, 1, or 2 mg/kg/day TPT for 18 days. Immature Leydig cells isolated from 35-day-old rat testes were treated with TPT (10 and 100 nM) for 24 h in vitro. In vivo exposure to ≥0.5 mg/kg TPT lowered serum testosterone levels and lowered Star mRNA. TPT at 2 mg/kg also lowered Lhcgr, Cyp11a1, Hsd3b1, Hsd17b3 as well as pAKT1/AKT1, pAKT2/AKT2, and pERK1/2/ERK1/2 ratios. In vitro exposure to TPT (100 nM) increased ROS production and induced cell apoptosis rate in rat immature Leydig cells. In conclusion, TPT exposure disrupts Leydig cell development possibly via interfering with the phosphorylation of AKT1, AKT2, and ERK1/2 kinases.

9.
Chemosphere ; 211: 986-997, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30119030

RESUMO

Polybrominated diphenyl ethers are a class of brominated flame retardants that are potential endocrine disruptors. 4-Bromodiphenyl ether (BDE-3) is the most abundant photodegradation product of higher polybrominated diphenyl ethers. However, whether BDE-3 affects Leydig cell development during puberty is still unknown. The objective of this study was to explore effects of BDE-3 on the pubertal development of rat Leydig cells. Male Sprague Dawley rats (35 days of age) were gavaged daily with BDE-3 (0, 50, 100, and 200 mg/kg body weight/day) for 21 days. BDE-3 decreased serum testosterone levels (1.099 ±â€¯0.412 ng/ml at a dose of 200 mg/kg BDE-3 when compared to the control level (2.402 ±â€¯0.184 ng/ml, mean ±â€¯S.E.). BDE-3 decreased Leydig cell size and cytoplasmic size at a dose of 200 mg/kg, decreased Lhcgr, Star, Dhh, and Sox9 mRNA levels at ≥ 100 mg/kg and Scarb1, Cyp11a1, Hsd17b3, and Fshr at 200 mg/kg. BED-3 also decreased the phosphorylation of AKT1, AKT2, ERK1/2, and AMPK at 100 or 200 mg/kg. BDE-3 in vitro induced ROS generation, inhibited androgen production, down-regulated Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Srd5a1, and Akr1c14 expression in immature Leydig cells after 24-h treatment. In conclusion, the current study indicates that BDE-3 disrupts Leydig cell development via suppressing AKT, ERK1/2, and AMPK phosphorylation and inducing ROS generation.


Assuntos
Éteres Difenil Halogenados/química , Células Intersticiais do Testículo/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
10.
Mol Cell Endocrinol ; 474: 158-167, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29524480

RESUMO

Bisphenol A (BPA) is widely used in consumer products and a potential endocrine disruptor linked with sexual precocity. However, its action and underlying mechanisms on male sexual maturation is unclear. In the present study, we used a unique in vivo ethane dimethane sulfonate (EDS)-induced Leydig cell regeneration model that mimics the pubertal development of Leydig cells and an in vitro stem Leydig cell differentiation model to examine the roles of BPA in Leydig cell development in rats. Intratesticular exposure to doses (100 and 1000 pmol/testis) of BPA from post-EDS day 14-28 stimulated Leydig cell developmental regeneration process by increasing serum testosterone level and Leydig cell-specific gene (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, and Hsd11b1) and their protein expression levels. BPA did not alter serum luteinizing hormone and follicle-stimulating hormone levels as well as the proliferative capacity of Leydig cells in vivo. In vitro study demonstrated that BPA (100 nmol/L) stimulated the differentiation of stem Leydig cells by increasing medium testosterone levels and up-regulating Leydig cell-specific gene (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and their proteins but did not affect their proliferation measured by EdU incorporation. In conclusion, BPA stimulates the differentiation of stem Leydig cells in rat testes, thus possibly causing sexual precocity in the male.


Assuntos
Compostos Benzidrílicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Intersticiais do Testículo/citologia , Fenóis/farmacologia , Testículo/citologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Hormônio Foliculoestimulante/sangue , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Ratos Sprague-Dawley , Testosterona/sangue , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
11.
Mol Cell Endocrinol ; 472: 26-39, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29180110

RESUMO

Inflammation causes male hypogonadism. Several inflammatory cytokines, including interleukin 6 (IL-6), are released into the blood and may suppress Leydig cell development. The objective of the present study was to investigate whether IL-6 affected the proliferation and differentiation of rat stem Leydig cells. Leydig cell-depleted rat testis (in vivo) and seminiferous tubules (in vitro) with ethane dimethane sulfonate (EDS) were used to explore the effects of IL-6 on stem Leydig cell development. Intratesticular injection of IL-6 (10 and 100 ng/testis) from post-EDS day 14 to 28 blocked the regeneration of Leydig cells, as shown by the lower serum testosterone levels (21.6% of the control at 100 ng/testis dose), the down-regulated Leydig cell gene (Lhcgr, Star, Cyp11a1, Cyp17a1, and Hsd17b3) expressions, and the reduced Leydig cell number. Stem Leydig cells on the surface of the seminiferous tubules were induced to enter the Leydig cell lineage in vitro in the medium containing luteinizing hormone and lithium. IL-6 (1, 10, and 100 ng/ml) concentration-dependently decreased testosterone production and Lhcgr, Cyp11a1, Cyp17a1, Hsd17b3 and Insl3 mRNA levels. The IL-6 mediated effects were antagonized by Janus kinase 1 (JAK) inhibitor (filgotinib) and Signal Transducers and Activators of Transcription 3 (STAT3) inhibitor (S3I-201), indicating that a JAK-STAT3 signaling pathway is involved. In conclusion, our results demonstrated that IL-6 was an inhibitory factor of stem Leydig cell development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Interleucina-6/farmacologia , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Células-Tronco/citologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Contagem de Células , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor gp130 de Citocina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Masculino , Ratos , Testosterona/metabolismo , Antígenos Thy-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...